3 Yr. Degree/4 Yr. Honours 1st Semester Examination, 2023 (CCFUP)

Subject: Physics

Course: PHYS1011 (MAJOR)

Time: 2 Hours

The figures in the margin indicate full marks.

Full Marks: 40

Candidates are required to give their answers in their own words as far as practicable.

Group-A

1. Answer any five questions:

 $2 \times 5 = 10$

(a) Write down the Taylor series expansion of a function f(x) about $x = x_0$. Prove that:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} \dots$$

- (b) Solve the equation: $\frac{dy}{dx} + lnx^y = 0$
- (c) The vector equation: $\vec{A} \times \vec{C} = \vec{B} \times \vec{C}$ does not necessarily imply $\vec{A} = \vec{B}$. Justify your answer.
- (d) Prove the identity $\overrightarrow{\nabla} \cdot (\overrightarrow{A} \times \overrightarrow{B}) = \overrightarrow{B} \cdot (\overrightarrow{\nabla} \times \overrightarrow{A}) \overrightarrow{A} \cdot (\overrightarrow{\nabla} \times \overrightarrow{B})$.
- (e) A force \vec{F} is defined as: $\vec{F} = (3x + 5y)\hat{\imath} + (5x + 2z)\hat{\jmath} + (2y + 3x + 4z)\hat{k}$. Is the force conservative?
- (f) Write the expression of an elementary volume in terms of scale factors and co-ordinates. Hence calculate the volume of a sphere of radius a.
- (g) $\phi(x, y, z) = \text{Constant}$, describes a surface. Prove that $\overline{\nabla} \phi$ is perpendicular to the surface.
- (h) The equation of motion of a particle of mass m is: $m \frac{d^2 \vec{r}}{dt^2} = \hat{r} f(r)$. Prove that $\vec{r} \times \frac{d\vec{r}}{dt} = \text{Constant}$.

Group-B

Answer any two questions:

 $5 \times 2 = 10$

- 2. Evaluate the integral: $\int_{S} \vec{A} \cdot \hat{n} ds$ where $\vec{A} = 2xz\hat{i} y^2\hat{j} + yz\hat{k}$ and s are the surfaces of the unit cube $0 \le x, y, z \le 1$.
- 3. Solve the differential equation: $x \frac{dy}{dx} + y = x^2 y^2$.
- **4.** If u = f(x y, y z, z x), then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.
- 5. Find the unit vectors in cylindrical co-ordinate system and prove that they are orthogonal to one another.

32508

Please Turn Over

Group-C

Answer a	ny two	questions

 $10 \times 2 = 20$

- 6. (a) Find the differential equation whose solution is $xy = Ae^x + Be^{-x} + x^2$.
 - (b) Solve the differential equation: $(x^3 x) \frac{dy}{dx} (3x^2 1)y = x^5 2x^3 + x$.
- 7. (a) Evaluate the integral: $\iiint \frac{dxdydz}{x^2+y^2+z^2}$ throughout the volume of the sphere $x^2+y^2+z^2=a^2$. 5
 - (b) Apply Green's theorem in a plane to evaluate the integral: $\oint_C (3x^2 8y^2)dx + (4y 6xy)dy$, where C is the region bounded by $y = \sqrt{x}$ and $y = x^2$.
- 8. (a) Divide 120 into three parts so that the sum of their products taken two at a time shall be the maximum.
 - (b) Define Jacobian, $J\left(\frac{u,v}{x,y}\right)$. Prove that $J\left(\frac{u,v}{x,y}\right) \times J\left(\frac{x,y}{u,v}\right) = 1$.
- 9. (a) A particle of mass m is falling under gravity. The resistive force from the medium is proportional to velocity of the particle. Set up the equation of motion of the particle and determine the velocity at a time t. Show its graphical variation. 1+3+1
 - (b) The position vector of a particle is: $\vec{r} = r\hat{e}_r + \hat{k}Z$. Determine the velocity and acceleration of the particle.